
Variations on Variable-Metric Methods 

By J. Greenstadt 

(Appendix by Y. Bard) 

Abstract. In unconstrained minimization of a functions, the method of Davidon-Fletcher- 
Powell (a "variable-metric" method) enables the inverse of the Hessian H of f to be ap- 
proximated stepwise, using only values of the gradient of f. It is shown here that, by solv- 
ing a certain variational problem, formulas for the successive corrections to H can be de- 
rived which closely resemble Davidon's. A symmetric correction matrix is sought which 
minimizes a weighted Euclidean norm, and also satisfies the "DFP condition." Numerical 
tests are described, comparing the performance (on four "standard" test functions) of two 
variationally-derived formulas with Davidon's. A proof by Y. Bard, modelled on 
Fletcher and Powell's, showing that the new formulas give the exact H after N steps, is 
included in an appendix. 

1. The DFP Method. The class of gradient methods for finding the uncon- 
strained minimum of a function f(x)* in which the direction Sk of the next iterative 
step from Xk to Xk+l is computed from a formula such as: 

(1-1) Sk = -Gk1gk 

is called the class of variable-metric methods. Here Gk is a (preferably) positive- 
definite N X N matrix and gk is the gradient Vf evaluated at xk. 

The reason for this nomenclature is that Sk is the direction in which the direc- 
tional derivative of f is a minimum, i.e., the direction in which 

(1-2) Sk kT - Sk (Vf)k = minimum 

subject to the length of Sk being constant: 

(1-3) 1 sklI = constant. 

Usually, the length of Sk is given in terms of a quadratic form involving a metric 
matrix (or tensor) G (of order N X N), so that: 

(1-4) 11S111 = STGs. 

Then, it can easily be shown [2] that the solution to the problem is given by Eq. 
(1-1). When G varies from point to point (as in Newton's method), the "metric" is 
variable, hence the name. 

Davidon's well-known method [3] was called by him a variable-metric method 
because it has this feature of using a changing "inverse matrix" from one step to 
the next. Fletcher and Powell [4] were able to simplify Davidon's method, and to 
clarify many of its features and characteristics. 
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The Davidon-Fletcher-Powell (or DFP) method is very closely related to 
Newton's method. If Gk were equal to the Hessian matrix of f, viz., 

[k 1 
(1-5) Gk = Laxiax]jX=xk 

then Eq. (1-1) would be the Newton formula used for finding the root of Vf = 0. 
Since Newton's method is usually by far the most efficient of the gradient methods 
[5], it would be very nice to have available at each step all of the quantities needed 
to evaluate Sk from (1-1). It is usually rather inconvenient, however, and sometimes 
not feasible, to calculate so many second derivatives. 

In the DFP method, a sequence of progressive estimates {Hk} is made of the 
inverse Hessian G-1, based only on the first derivatives of f. The sequence of steps 
in a cycle is as follows: From the calculated gradient gk at Xk, the next step direction 
is computed using the current estimate for G-1, so that: 

(1-6) Sk = -Hkgk. 

Then the minimum of f is found along the direction Sk. Let the total step Sk to this 
point be a multiple ak of Sk, i.e., 

(1-7) Ok = akSk 

and 

(1-8) Xk+1 = Xk + 7k. 

We then define 

(1-9) Yk -k+1 -gk 

The correction to Hk, to form the next estimate, Hk+l, is as follows: 

O'Ok HkYkYkTHk 
(1-10) Hk+l = Hk + T (kTHkyk) 

(o-k Yk ) (YkTHkYk ) 

and, using this new H, the whole cycle is repeated. 
As emphasized by Fletcher and Powell, a full appreciation of the significance 

of formula (1-10) rests on an analysis of functions f which are exactly quadratic. 
For such a function the Hessian G is a constant matrix, so that certain exact re- 
lationships are valid among the various quantities involved. In particular, they 
show that the first part of the correction in (1-10) follows from the form of the 
spectral resolution of G-1. The second part is related to a very important require- 
ment on H, viz., that it should satisfy a relationship derivable for a function which 
is an exact quadratic.** 

Let us therefore consider a quadratic f of the form: 

(1-11) f = fo + go + xTGox, 

where fo, go, and Go are all constants. We then have 

(1-12) g = Vf = go + Gox . 

** Alternative corrections to Hk have been derived by Davidon [8], Broyden [9] and Wolfe 
[10]. These differ from the DFP correction in that they are of rank unity ("rank-one" corrections). 
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Now, since go is not known, but only gk (for x = xk), we can eliminate go by differenc- 
ing two equations of the form of (1-12) which hold at xk and xk+l, respectively. 
We obtain 

(1-13) gk+1 - gk= (go + Goxk+l) -(go + GoXk) 

- Go(Xk+l - Xk) 

so that if we define 1k gk+?1-k and 0k =Xk+ 1- xk (as in (1-8)), we can write 

(1-14) Ykk = GOk 

or in terms of H, the inverse of Go 

(1-15) HYk = Sk- 

It was shown by Fletcher and Powell that the second term in the correction in 
(1-10) is the simplest way of making the (k + 1)st estimate of H obey Eq. (1-15), 
namely: 

(1-16) Hk+lyk = Sk 

as well as satisfying the conditions already mentioned. This condition is central 
to what follows in this paper, and we shall call it the DFP condition. 

2. Variational Formulation. Let us now rephrase the variable-metric problem as 
follows: We wish to find a correction Ek to the estimate Hk of the inverse Hessian, 
as follows: 

(2-1) Hk+l = Hk + Ek 

so that Hk?l will satisfy (1-16). Since Ek is not thereby rendered unique, we need 
another principle, or criterion, to define it more precisely. 

Let us ask for the "best" correction Ek in some sense. There are many possible 
choices to make, but a good one is to ask for the smallest correction Ek, in the sense 
of some norm. To a certain extent, this would tend to keep the elements of H from 
growing too large, which might cause an undesirable instability. 

The simplest type of norm, and one which would be expected to lead to simple 
solutions for E, is a quadratic form in the components of E. The most general form 
of this kind is 

(2-2) NG(E) = > CijkmEijEkm. 
ijkm 

However, investigation of this general norm [6] yielded rather unsatisfactory, 
complicated formulas for E, which seemed to involve an amount of calculation 
comparable to that of calculating the Hessian directly. 

The simplest quadratic norm is, of course, the Euclidean norm, given by 

(2-3) NE(E) = j = Tr (EET) 

where the symbol Tr indicates the trace. Since this is too specialized, E was first 
transformed as follows: 

(2-4) F= AEB 
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and the Euclidean norm of F was calculated: 

(2-5) NE(F) = Tr (FFT) = Tr (AEBBTETAT) 

= Tr (ATAEBBTET) . 

This form also rendered a solution for E too complicated; however, when A = B, 
and ATA is denoted by W (a positive-definite symmetric matrix), the problem 
turned out to have a rather simple solution. 

Hence, we shall take for N(Ek): 

(2-6) N(Ek) = Tr (WEkWEk T) 

and we shall try to minimize N(Ek), subject to (1-16), and to a symmetry condition: 

(2-7) EkT - Ek = 0 

which is required because the Hessian is symmetric, and we wish to preserve the 
symmetry of H (when we start with a symmetric first guess). We shall rewrite 
(1-16) in terms of Ek: 

(2-8a) 0k = Hk+lyk = (Hk + Ek)Yk 

which reduces to: 

(2-8b) Ekyk = 0Jk - Hkyk - rk. 

In the remainder of this derivation, we shall ignore the subscript k. 
We shall solve this constrained minimization problem by the use of Lagrange 

multipliers. We form the composite function 1 as follows: 

(2-9) ' Tr (WEWE A) + XT(Ey - r) + Tr [r(E - E)]. 

We also note that 

(2-10) XT(Ey - r) = Tr [(Ey - r)XT]. 

Our next task is to differentiate 4 with respect to E. We note that 

(2-1 la) a [Tr (EA)] ={a EEjAji} = { Amk} = AT 

and 

(2-lib) [Tr (ETA)] = { iiEjiAji} = {Akm} A. 

Hence, we have 

(2-12) a= WEW + XyT+ rT_ r = 0 

so that 

(2-13 ) E = -M[XyT + rT - r]M 

where M = W-1. Transposing E, we have 

(2-14) ET = -M[yXT + r - riT]m 



VARIATIONS ON VARIABLE-METRIC METHODS 5 

since M is symmetric. Subtracting ET from E should give zero, so that 

(2-15) E - E = _M{XyT - yXT + 2pT - 2r}M = 0 

and we have 

(2-16) rT _ - = (yXT _ XyT) 

Substituting this into (2-13) gives 

(2-17) E = -M{XyT + 2 (y? - XYT)}M 
- M{yXT + XyT}M. 

Now we take note of the DFP condition; Eq. (2-8b): 

(2-18) Ey - r = -2 M[yXT + XYT]My - r = 0. 

Premultiplying by 2W-, we have 

(2-19) (YXrT + XyT)My + 2Wr = 0 
from which we solve for the X which is free from the inner product. The result is 

(2-20) X = -(yTMy)-1[2Wr + y(XTMy)]. 

We now premultiply by yTM to obtain: 

(2-21) yTMX = - (yTMy) '[2(yTr) + (YTMY) (XTMY)] 

and, since yTMX is the same as XTMy, we can solve for XTMy. The result is 

(2-22) XTMY = _ (yTMy)1 (yT r) 
We now substitute this back into (2-20) to obtain: 

(2-23) X -(y TMy)-1[2Wr - (yTMy)1 (yT r)y] 
= (YTMy)_2(yTr)y - 2(yTMIy>)Wr 

and we are in a position to replace X in Eq. (2-17). We then have for E 

(2-24) E (T y) { M )MyyTM} 

and, finally, replacing r by a - Hy, we obtain 

E=- 1 {JyTM + MyoTT _ HyyTM - MyyTH 
(2-25) ( y 

1 
[(YT ) _ (yTHy)]MyyTM} 

(YTMY) 

which is our final formula for E. The two obvious choices for the weighting matrix 
W, both of which lead to relatively simple formulas for E are 

(2-26a) W-1 M = H, 

(2-26b) W= I. 

We obtain for E respectively 
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(2-27a) Er = (T1 ) {yTH + Hyo- 1 + (?)]Hyy H} 

EIr = 1 {yT + Y7T _-HYY - YYTH 

(2-27b) (YTY 
Y 

1 ( HY) ]YYT} 
~(T) " -Y 

The DFP correction, for comparison, is 

(2-28) ED= ( SST_ HyyTH 
(YT 0') (yTHy) 

so that E1, to some extent, resembles ED. 
The resemblance between E1 and ED goes deeper than mere appearance. Fletcher 

and Powell showed that for a quadratic function f, the DFP formula for E would 
lead to an exact solution of the minimization problem in N steps, and that the value 
of H attained at that point would be exactly Go-'. The Appendix of this paper con- 
tains a proof, by the author's colleague, Dr. Y. Bard, that E1 also has this de- 
sirable property. In the experimental tests, to be described in Section 4, this is 
borne out. 

3. The Problem of Stability. The derivative of f in the direction Sk at Xk, is 
proportional to the expression in Eq. (1-2), i.e., 

(3-1) (df/dt)k = skk Tgk 

where t is any parameter measured along 8k, and A is some positive number inde- 
pendent of Sk. When Sk is found from a formula such as (1-6), we have 

(3-2) (df/dt)k = -IkgkHkgk 

which is a quadratic form in the components of 9k. 

Fletcher and Powell showed that, in the DFP method, Hk is positive definite 
for any k, provided that Ho is positive definite, and that the line search for minimum 
f along Sk is carried out to sufficient accuracy. This is a very good property of the 
DFP estimates for G-1 since it guarantees that some progress can be made at each 
step in decreasing f. Fletcher and Powell called this stability. 

Neither of the correction formulas (2-27) has this desirable property; this shows 
up in the numerical trials described in Section 4, in which it frequently happened 
that (df/dt)k > 0, when it was necessary to reverse 8k, i.e., to go backwards in order 
to make f decrease. 

The question can now be raised: Is it not possible to formulate a "best" correc- 
tion problem which will have some sort of stability, i.e., some guarantee that 
df/dt < 0 in the direction calculated from Hk+1? This can be done, but it is a problem 
involving an inequality constraint, which follows from the condition on df/dt. 

Let us assume that we had made a step 0k from Xk to Xk+I, have evaluated gk+1, 

and have somehow calculated Hk+1, and, from it 

(3-3) Sk+1 = -Hk+lgk+l 
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We wish now to assure that, in accordance with the requirement that (df/dt)k+l < 0, 

we have 

(3-4) -gk+,Hk+lgk+l < 0 

In order to make the conditions independent of the scale of gk+1, and to allow 
a little leeway, we shall instead require: 

(3-5) -gk+lHk+lgk+l < -cogk+lgk+l 

where w is a small number. (It may not always be possible to achieve (3-5), but this 
would only occur if Xk+l were at a true stationary point.) 

Inequality (3-5) can be changed into an equality constraint by using a device 
due to Klein [7]. We introduce a new variable u, and set 

(3-6) gk+lHk+lgk+l - C'gk+lgk+l - 0. 

From this point on, we shall drop the subscripts, and denote quantities as- 
sociated with Xk+l by a subscript asterisk. Those associated with Xk will be unmarked. 

We now replace H* (_ Hk+1) as follows: 

(3-7) H* =H+E 

and Eq. (3-6) becomes: 

(3-8) TEgq + K U2 = O 

where 

(3-9) K = g*T(H -I)g 

The composite function analogous to that in Eq. (2-9) is: 

(3-10) ~ jb Tr (WEWET) + Tr [(Ey - r)XT] 

+ Tr [r(E - ET)] + (g*TEg* + K - U2) 

and we have 

(3-1 la) ablaE = WEW + XyT + rT - r + g g*T 
= 0 

(3-lib) a 1/au = -2tu = 0 

together with 

(3-lic) a = Ey - r = 0 

(3-lid) ab/ar =ET- E =0 . 

By the same sort of manipulations as used before, the solution for E is 

(3-12) E = 7-r1{ryTM + MyrT _ 7-l (YTr - &2)MYYTM 

-E [Mg*yTM + Myg*TM] + iMgqgqTM} 

where 

(3-13a) E g TMy 
T (3-13b) r y My. 
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In order to apply condition (3-lib), we note that if u $ 0, then t must vanish. 
Hence, we first evaluate E for t = 0, and test for whether 

(3-14) 9*TEog* + K > 0 

(where Eo stands for E calculated with 0 = 0). If this is so, then Eo is already 
satisfactory, and can be added to H. 

TABLE 1 

Rosenbrock's function (strong search) 

DFP Var. I Var. II 

Step f NF f NF f NF 

0 24.2 1 24.2 1 24.2 1 

2 3.79 23 3.79 23 3.79 23 

4 2.89 36 3.04 41 2.11 47 

6 2.05 53 2.07 52 1.56 64 

8 1.27 71 1.87 74 9.9x10-1 80 

10 6.4xlO- 1 90 6.4xlO-1 100 6.9xlO -1. 90 

12 3.7xlO- 1 106 2.9xlO- 1 123 4.2xlO-1 116 

14 2.OxlO- 128 1.4xlO-1 141 1.9xlO-1 134 

16 8.2x10- 2 144 5.3x10-2 157 3.7xlO-3 154 

18 3.6x10- 2 161 1.5x10-2 179 6.4x10-4 181 

20 3.4xlO- 3 177 1.4xlO- 3 204 1.7xlO- 6 198 

22 1.9x10- 4 189 2.2x10- 7 212 6.6x10-10 209 

24 4.8xlO- 8 197 3.2xlO- 14 221 

26 (25)3.2x10-12 200 

T.B.U. 0 10 8 

If, on the other hand, (3-14) does not hold, then u cannot differ from zero, but 
must be set equal to zero, and t cannot vanish. The result of substituting (3.12) 
into (3-8) (with u = 0) is 

(3-15) r1{ 2fE + r1 (p - tE2) - 20eE2 + 02 } + K = 0 

where 
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(3-16) yTMy X 9g* r, 
gTMg T 

Solving (3-15) for t gives 

TK + 217e + rT p12 
(3-17) = T4 ?220 2 

M still must be selected, as previously; the most natural choices are as before. 
However, this analysis will not be carried further here, since no numerical tests 
have been made on these formulas. 

TABLE 2 

Rosenbrock's function (weak search) 

DFP Var. I Var. II 

Step f NF f NF f NF 

0 2.42 1 2.42 1 2.42 1 

4 2.33 16 2.33 16 1.90 17 

8 1.90 30 1.45 35 1.50 30 

12 1.39 49 8.4x101 54 5.4xlO-1 41 

16 1.10 62 2.7x101 7 3.0xlO1 56 

-2 20 6.5x1O-1 78 9.2xl 0-3 90 5.1xl -2 74 

24 4.8xlO-1 97 8.0xlO-5 105 1.3x102 91 

28 3.3x101 113 8.9x10-7 115 9.0xlO-8 112 

32 2.5x10 1 130 3.9x109 136 (31)0.0 122 

-13 
36 1.OxlO- 148 (33)8.7xlO- 138 

40 1.2x10-2 161 

44 1.5X103 175 

48 4.3xlO- 8 186 

56 (51)0.0 192 

T.B.U. 0 117 

4. Numerical Experiments. A program was written which enabled a comparison 
to be made of the three H-corrections; viz., ED, E1 and Ely. This program used the 
same line-search subroutine for all three methods, with the same set of stopping, 
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thresholds, etc. Provision was made for printing out the step number k, the values 
of fk, gk, Hk, etc. at each step. Whenever, a nonnegative starting directional deriva- 
tive was detected, a notation to this effect was printed out, and the sign of Sk was 
reversed. The problem was considered solved when the Euclidean norm of gk fell 
below 10-4. An additional test was made on the magnitude of Sk; when this fell 
below 10-6 before the minimum was reached, the method was considered to have 
failed. The reason for this is that when Idf/dtl was too small, it was impossible to 

TABLE 3 

Powell's function (strong search) 

DFP Var. I Var. II 

Step f NF f NF f NF 

0 2.15x10-2 1 2.15x10 -2 1 2.15x10 2 1 

4 2.9xl0-2 46 3.0x10_2 46 2.2 49 

8 1.9x10-3 69 1.6x10 -3 73 3.5x10-3 78 

12 1.2x10 r 102 1.8x10 5 103 1.1x10 3 101 

16 1.2xlO-1 123 3.2xlO- 8 138 1.0x10- 3 126 

20 (18)4.9xlO-1 134 19)1.5xlO-10 163 1.2x10 3 151 

-4 
24 1.1xl 0 178 

28 3.9xlO- 6 204 
7 

32 3.4x10 226 

36 3.4x10-7 257 

40 3.1x210 7 279 

44 3.1x10 304 

-7 
48 2.6x10 341 

52 9.6xO8 362 

56 7.5xl0 391 

60 5.9X108 431 

64 5.3x108 457 

68 4.7x10-8 498 

72 (69)4.5x108 501 

.B.U 0 8 33 
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TABLE 4 

Powell's function(weak search) 

DFP Var. I Var. II 

Step f NF f NF f NF 

0 2. 1SX102 1 2. 15X102 1 2.15x10 2 1 

4 9.0 16 8.5 16 1.6x10 18 

8 3.2x10-2 29 4.4x10- 2 28 2.2x10 1 26 

12 3.6x10- 4 43 2.7x10-2 49 2.5x10- 2 41 

16 1.6x10-4 61 6.lxlO -7 63 5.0x10- 4 58 

20 1.0x10-4 75 1.4x10- 7 74 1.9x10-5 72 

24 5.0x10- 5 91 7.4x10- 
a 

96 1.4x10-5 88 

28 2.SxlO- 111 4.7x10-1 ? 113 6. x10-6 102 

32 8.7x10- 8 125 (29)2.lxlO- 1 18 5.6x10- 6 119 

36 2.6x10-9 139 4.4x10-6 134 

40 37)2.4x10- 
10 

144 3. lx106 153 

- 7 
44 5.4x10 174 

- 7. 
48 1.2x10 191 

52 4.8x10 8 206 

56 (53)9.8x10-8 211 

T.B.U. 0 9 22 

obtain a detectable change in f in the Sk-direction in any reasonable step. This was 
the result, usually, of a poorly chosen direction Sk due to the lack of positive definite- 
ness of Hk, which pointed up the desirability of this attribute. 

There were two line searches used in the tests; in the first, which we shall call 
the "strong" one, the search was terminated when a certain quantity, estimated 
from current and past values of f, fell below 10-2. This quantity is the lowest-order 
dimensionless ratio associated with minimization, and it is given by: 

(4-1) p= fI tf 1f,,2 

where the primes denote directional derivatives of the various orders. This ratio is 
closely connected to the error made in estimating the minimum of a nonquadratic 
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function by an interpolated parabola, and does not depend on the scale of f or on 
that of the independent variable along Sk, so that this termination criterion is in- 
dependent of whether the minimum is a sharp one or a flat one, and gave uniformly 
quite accurate minima. 

TABLE 5 

Fletcher-Powell's function (strong search) 

DFP Var. I Var. II 

Ste f NF f NF f NF 

0 2.5x10 1 2.5x103 1 2.5x103 1 

2 1.3x102 19 1.29x102 19 1.29x102 19 

4 2.7xlO 40 2.7xlO 46 5.6x1O 37 

6 1.1xlO 48 l.lxlO 67 1.2xlO 52 

8 6.5 68 1.0x10 79 2.8 64 

10 2.2 84 7.6 99 1.7 85 

12 7.0xlO-1 100 3.1 114 8.5xlO-1 98 

14 1.7xlO-1 114 1.9 131 4.4xlO-1 110 

16 2.6x10-2 131 6.3xlO-1 144 3.3xlO-1 124 

18 2.2xlO- 4 139 7.5x1O0-2 167 4.4xlO-2 138 

20 4.2xlO -10 145 9.3x10-3 179 3.1x10-2 161 

22 21)2.1x10-" 148 7.7xlO-5 187 1.2x10-2 181 

24 2.6xlO-1 194 4.5xlO- 3 192 

-5 
26 2 .8x10 20 1 

28 9.4x10-7 210 

-7 
30 2.6x10 223 

32 3.4xl0 23 7 

- 1 
34 1 .lx10 24 5 

36 (35)6.6xlO 252 

.B. 0 10 10 

The second line search-the "weak" one, terminated as soon as a point along 

Sk was found at which f was smaller than the values at the points immediately to 
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its left and to its right; i.e., as soon as a point was "bracketed," it was taken as the 
solution point of the line search. The significance of this weakening is twofold: on 
the one hand, the successive directions {Sk} will usually not be conjugate, since 
this depends on finding a rather accurate minimum in the search, and this causes 
the Fletcher-Powell proof of positive definiteness to break down. On the other hand, 
many fewer time-consuming evaluations are required before the search is terminated. 
Dr. M. J. D. Powell, who suggested trying the "weak" search, was interested in 
the outcome of this competition, with regard to overall efficiency. 

TABLE 6 

Fletcher-Powell's function (weak search) 

DFP Var. I Var. I I 

Step f NF f NF f NF 

0 2.5x103 1 2.5x103 1 2.5xlO3 1 

2 1.2x103 11 1.2x103 11 1.2x103 11 

4 3.2xlO 18 3.3xlO 18 9.8x102 18 

6 1.5x10 24 (5) 3.3xlO 39 2.lxlO2 22 

8 1.2xlO 31 failed 4.OxlO 28 

10 9.6 43 2.7x10 37 

12 8.4 55 2.3xlO 41 

14 6.1 65 2.2xlO 47 

16 4.5 89 2.lxlO 54 

18 4.4 113 2.0xlO 74 

20 4.4 126 l.9x10 81 

22 4.4 132 1.8xlO 91 

24 4.4 143 1.7xl0 98 

26 4.4 147 1.7xlO 108 

28 4.4 152 1.6xlO 127 

30 4.4 159 1.2xlO 137 

32 failed 1.OxlO 143 

34 l.Ox1O 13 6 

36 failed 

B.U ~~~~~3 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0 
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TABLE 7 

Steps to Decrease f to Below Set Level 

Box's 2D function (strong search) 

Starting Point 

Method Level I II III IV V 

1 3 1 1 1 1 

10-1 6 1 26 1 1 

DFP 10-2 8 3 39 7 1 

10-4 10 6 42 10 1 

10-8 11 7 44 11 3 

Total f. evals. 69 66 443 91 34 

1 3 1 1 1 1 

10-1 6 1 failed 1 1 

Voalr. Ivl.16 63 

Var. I 10-2 7 3 4 1 

10-4 9 5 6 1 

____ 10-8 10 7 7 3 

Total f. evals. 81 66 56 34 

1 3 1 1 1 1 

Var.II 10-1 6 1 6 1 1 

10-2 7 3 8 4 1 

10-4 10 S 9 6 1 

______ 10-8 12 7 11 7 3 

Total f. evals. 93 71 88 59 33 

The tests were made on four "difficult" functions which have been used pre- 
viously to test other minimization methods. These are: 

(a) Rosenbrock's function (tested in [4]) 

(4-2) f(X1, X2) = 100(X2 - X12)2 + (1 -X1)2 

with a starting point of (-1.2, 1.0). 
(b) Powell's function (tested in [4]) 

(4-3) f(Xl, X2, X3, X4) = (X1 - 10X2) + 5(X3 - X4) 

+ (X2- 2X33)4 + 10(X - X4) 

with a starting point of (3, - 1, 0 1). 
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(c) Fletcher-Powell function (tested in [4]) 

(4-4) f(X1, X2, X3) = 100 { (X3- 10)2 + (r - 1)21 + X32 

where r = (X12 + X22)1/2 and 

0 - arctan (x2, if xi > 0 
1 (X2\ 

0 -2 arctan + 2 i if xi < 

with a starting point of (-1, 0, 0). 
(d) Box's function [1] 

(4-5) f(Xi, X2, X3) E {[ev1i - 01x2] - x3[e- 

where the summation is over the values of ,u = .1, .2, ***, 1. There are two cases 
considered: 

Case 1. x3 is fixed at the value 1, and the minimum with respect to xi and x2 is 
sought. 

Case 2. The minimum in terms of xi, X2 and X3 is sought. 
The starting points were those chosen by Box, and were 
Case 1. 

(X1, X2) = (0, 0); (0, 20); (5, 0); 

(5, 20); (2.5, 10) . 

Case 2. 

(X1, X2, X3) = (0, 20, 1); (2.5, 10, 10); 

(0,0, 10); (0, 10, 1); 

(0, 10, 10); (0, 10, 20); 

(0, 20, 0); (0, 20, 10); 

(0, 20, 20) . 

The results of the trials are shown in Tables 1-10, which are largely self-ex- 
planatory. They are modelled after the tables published by Fletcher and Powell, 
and by Box. A few explanations with regard to certain markings are, however, in 
order. 

(a) Whenever a sequence terminates at a step whose number is not in the table, 
the actual terminal step number is placed in parentheses just preceding the f-value 
reached. 

(b) The NF column contains the number times the function f was evaluated 
up to the completion of the step in question. The gradient at this point would 
have been evaluated a number of times equal to the step number. 

(c) The entry "T.B.U." refers to the total number of "back-ups" due to df/dt 
being positive. 

(d) In Tables 7 through 10, the starting point numbers refer to the lists given 
above for the Box cases. 
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(e) In Tables 9 and 10, the asterisk indicates that the "wrong" solution was 
found (see Box [1]). This does not mean that the method failed, but that the starting 
point was unfortunate. 

TABLE 8 

Steps to Decrease f to Below Set Level 

Box's 2D function (weak search) 

Start_ Point l 
Method Level I I III IV V 

1 2 2 1 1 1 

10-1 7 4 30 3 1 

DFP 10-2 8 77 66 36 2 

10-4 11 137 95 39 4 

10-8 12 142 100 42 30 

Total f. evals. 45 628 441 204 114 

1 2 2 1 1 1 

10-1 7 4 failed 3 1 

Var. I 10-2 10 11 9 2 

10-4 12 14 12 4 

10-8 14 16 15 9 

Total f. evals. 54 60 67 38 

1 2 2 1 1 1 

10-1 4 4 11 3 1 

Var. II 10-2 7 9 14 9 2 

10-4 10 13 18 11 4 

_ 10-8 16 17 20 16 10 

Total f. evals. 74 69 97 78 39 

5. Conclusions. There are no very clear-cut implications in the results of the 
numerical experiments. In certain cases, the DFP method is best, and in others the 
worst. "Var I" seems to be competitive with the DFP methods, but "Var II" is 
almost always worse than the others. It is also clear that sometimes the weak search 
is more economical and sometimes not. It is certainly not as dependable as the 
strong search. 



VARIATIONS ON VARIABLE-METRIC METHODS 17 

X *n - Ln 00 0 LI N (,4 LI N '- Ln N r ) O) 'O \0 
H _ -4 _ r_4 r-4 r_4 0-4 _ -4 " 00 

H (NI d "a 4M) LI) 00 ('4 "1- 0) 0 tn 00 4 t PI tN 0 N - 

H _ > t1 > ~~~~~~~ ~ ~~~~~~~~~~~~~~_4 r_1 o -O _ tn tn 

- ''-4 , (4 . 4- '-4 '-4 ) ) 

> r '-4 -4 _-4 NJ 00 P-4 _-4 I, - '_4 00 -4 '-4 14 '- 00 

in N) 0) '0 0) Nw nl N 0) e 'D08 0) iN )in t- t 

r4 04 4 N 4 0 an Act 

ao '-4 

>~- . . - , -- 

4-i (c > '-4 '-4 tl v 0 4 '-4 VI qt0 0 in - 4 i 0 V I 
4) ) -i '-4 V) '4 qt '-4 00 

_ : ,<~ % HH o t 

0 0 '0 N (I 

0) ~~~~~~~~~~~~~~~~~~~~~~~-4 U) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Lr D C4 C1 n 0 l 

4n= ) H .b 1o 

J ~ ~~~ NI (N NI NO '0 -4 (N eN in 0: ON C rN (N in 00 N 
00 4-4 r '4 00 0) 

h 0 
4 -r-4 __1_____O_____ __________O 
U) 4-i 

cw U) 

0 . - __ ____ 
4~J U) 

U X 4) 
n:4 0 -4 r-4 '- %0 '-4 qc At '-4 '-4 'O00)0 "Jt '-4 '4 '-4 '-4 
41) 00'4 _-4 '_4 '_4 \0 H _ 
4_ . r .-4 

i >: n E- ___ >b _ H ___> o 
'-4 '-4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~r4r4 

4) '-4 (NI ~~ 00 (~~ '-4 (NI 0 0 (r '4 (NJ 00 Cd 
> r-4 I I I I > P-4 I I I I > '-4 I I > 
4) 0 00 04) 0 0004) 0 0004 

1. 4 '-4 ,-4 r-4 r4 4 r_ 4 ,-4V~ -4 ~4~ 
4-4 44 44 

0 
,4 

cdc4c 
4-I 4-i $ 4.1 $4-) 

4) ~~ ~~ ~ ~~~~~~~~~0 co 0 co 0 
0 H H~~~~~~~~~~~~~>E > 



18 J. GREENSTADT 

x L Lf) C m N- \0 0 '-4 0 q \o N '-4 L)n " t) L) 
- O~~~ N-C w 0 '-4 '-4 ( tJ n4~ te) '-4 '-q (" tn) ~- 

'- -4 CO0- 

-~~~~~~~~- 
H ) 0} Lt) t(J Q C '0 CY\ 0) O e) 0 C 00 '-4 ) m 4 4) 
H - _ t CO COO) _1 COJ C1 r4 '-4 (-J 49) _- 

4-4 

- _ 4 ,-4 ,-4 _4 ,-4 4 -4 ,-4 , ,-P4 . - 4 r-4 r4 _-4 ' 

F1- CO LI) N- w '-4 r _ 4 -4 oo CO) N C) d dI 0 
-4 > -4 r N _- -4 0 o 0 o -4 
4) 4) '- -4 '-4 

> 4- 
? 

4) ,- fq N- 
U 

4-) R 
4) > _-4 _-4 Ln 00 C 4 () C 00 -4 r-4 Ln C00 C 0 LI e'V 9 )0 

e 

nO 4) '-4 '-4 t \0 N- 0 '-4 C-J -. o9 . '-4 _ -4 eC 49)49 t 

?) O_____________49) '- m w = . _. o _ 0- 

oS ,W 4o ,,) 

4) 4) 

CO v 4. > '-4 C' C '00n ) o-4 CNI It Lo 0 \0 '-4 C qt Cn O ON- 

0 '..' Cl) 1-4 '~~~~~~"- C') '-4 C') '-449) 

0 %. % He H_ e HHH 

4-) 0o) CO C') 

44 0 - _t 
C OH 
" ~ 4) 4-) 
H U C. '4 )0 '-49 \0 CO 00 '-4 C') LI) 49 qc LI) \0 0 

c~~~~ - '~~~~r-4 '-4 ,-4 (9 -4 v-4 ,-4 ,-4 49 r-4 r4 r--4 r-4 C) ' 

~444 

4) 0 , 0 44) 

4-)~~~~~~~~~~~4 
o U) '-4~~~~-4 41 Lt n CN lt r- I t - (1 L 

4.) 4-4 0 ~~~~~-4 '0 CO '- -4 C') r- 0\ I)'0 CO LI) CO C') 

X 1-4 '0 C~~~ ~-4 ~-4 C')4 0) 

_) 0 44 '- 4 00 co _1 04 dR 00 t/ -4 I d 00 Vd 
AE> _ I I :> _1 14 I I ASI I> 4 I I I A > 
J 0A C? ?O ? ? a N- '0 -C) _ N-4 0_ 0 

_ N- CO N- - -4 ,-4 -4 '0 4 
r-4 r~~~~~~~~~-4 

4)0 '-4 C') ~ CO co C C' O CO O 

> '-4 I I I I > '-4 4 4 I> I - > E- 



VARIATIONS ON VARIABLE-METRIC METHODS 19 

One fact is clear: it is possible to derive efficient DFP-like correction formulas 
by variational methods. In fact, by suitably choosing M, it is possible to obtain the 
DFP formula by variational means. This has been done by Dr. D. Goldfarb, who 
has also derived other important formulas in this manner. (See his paper [11] which 
follows the present one.) 

This sort of thing suggests that it might be possible to derive other types of 
correction formulas on variational grounds. The writer has in fact derived a correc- 
tion to the gradient, based on f evaluations alone (and an assumed H), but it has 
so far not been tested numerically. 

6. Acknowledgement. I wish to thank Dr. R. T. Mertz, whose remark, during 
one of our discussions, about the advisability of looking for the "best" H-correction, 
consistent with the DFP condition, started me on the variational path. I am also 
grateful to Dr. D. Goldfarb, who pointed out various errors in the manuscript and a 
substantial mathematical error in my attempt to derive Davidon's formula varia- 
tionally. 

APPENDIX 

Proof that Hk -- G-1 for the Er Correction 

By Yonathan Bard 

THEOREM. Let f(x) = a + gTX + 2 x Gx be a quadratic function of the N-dimen- 
sional vector x, Ho any nonsingular symmetric matrix, and xo an arbitrary point. Let 
the following quantities be defined iteratively, for i = 0,1, 

(Al) gi Vf(x), 

(A2) ai -=iHig, 

with ai chosen so as to make 4 (a) = f(x, + ass) stationary (line search). 

(A3) x+1= xi + at, 

(A4) yi ti+1 - gi, 

(A5) ri yiTHiyi 

(A6) Ai ai-- TH1, 

(A7) B.-HiyiyiTHi, 

(A8) Hi+, = Hi + -{Ai +A7 - 
B- - (Yh)B} 

This is equivalent to Eq. (2-27a) (with r-i yTHiyi). 
Then, if either: 
(a) G is nonsingular and the oa (i = 0, 1, ***, N - 1) are linearly independent, or 
(b) G is positive definite and the o-a (i = 0, 1, ***, N 1) are nonzero, we have 

(A9) HN_ G-= 

and 
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(AlO) gN= 0, i.e., XN = -Gg 

(the stationary point of f(x)). 
Proof. The proof follows exactly the argument presented by Fletcher and Powell 

for Davidon's method (except for a minor error in Fletcher and Powell's induction 
argument; their Eq. (10) makes no sense for k = 1). 

By definition 

(All) gi = g + Gxi. 

Hence, yi gi+i - = G(xi+ - xi), i.e., 

(A12) yi= G= i 
We have 

Hi+,Go = Hi+jy = Hiyi + (l/ri) (Aiyi + AiTy - Biyi- (yTi/ri) Biyi). 

But Aiyi = rii; AiTy, = yTjriHiy,; Biyi = Hiyi. Hence, after cancellations: 

(A13) Hi+lGoi = i. 

From the choice of ai, it is clear that 

(A14) gq+1i = 0. 

Since or1+,Goi = -ai+lgi+,Hi+,Goi = -aj+lgai+lo (from (A13)), it follows that 

(A15) ai+iGai= 0. 

With i = 0, Eqs. (A13) and (A15) demonstrate that for k = 1, 

(A16) HkG-i=Ja, (O<i<k) 

(A17) 7jTGoi = 0, (0 < i <j < k) 

Let us assume that (A16) and (A17) are true for some value k. We shall prove 
that they must then be true for k + 1. Using (A16) and then (A12), we have 

Yk HkG-i = Yk Si = ?k Go (O < i < k) 

Thus, from (A17), 

(A18) YkTHkGoi = 0. 

It follows that 

AkGi = 'kYkTHkGoi = 0 (from (A18)), 

AkTGi = HkykOkTGi = 0 (from (A17)), 

BkGo-i = HkykykTHykG-i = 0 (from (A18)) 

and 

Hk+lGJ- = HkGo- +-{AkGOi + AkGi 
(A19) Tk 

- BkGi - Ykk BkGT2, = HkGJi = ai 
Tk 
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(from (A16), and (A13), (with i = k in the latter), we have 

(A20) Hk+lG'i = Ji, (O < i < k + 1). 

Now, for any 0 < i < k, 
k 

gk+1 = gi+i + G(Xk+l - Xi+l) = 9i+1 + E G0 j 
i=i+l 

whence 
k 

(A21) gk+10'i = q7+i9i + Z = 0. 
j=i+l 

Therefore, substituting (A20) in (A21), 

(A22) gT lHk+1Gcri = 0 

But, from (2), gk+lHk+l = -(1/ak?1)J41, and (A22) becomes 

(A23) Tk~iGcO (O < i < k) 

(assuming ak+1 X 0). Again, combining (A17), (A23) and (A15) (with i = k), we 
have 

(A24) 0rjTGxi = O, (O < i < j < k + 1). 

Equations (A20) and (A24) are equivalent to (A16) and (A17), respectively, 
with k replaced by k + 1. Thus, (A16) and (A17) are proven by induction for all k. 

Consider the matrix CN HNG. According to (A16), ori (i = 0, 1, I, N - 1) 
are all eigenvectors of CN with eigenvalues 1. These vectors are linearly inde- 
pendent, either from assumption (a) or from assumption (b) combined with Eq. 
(17), for were, say, 0m = Zir gioi, then, with j X m, 

crmTGo-j = Ejuioi Goj = ijuofGai = 0 
i^^m 

from (A17), but this is impossible if o-j X 0 and G is definite. 
Thus, there exists a nonsingular N X N matrix A (whose ith column is -i+1) 

such that HNGA = A. Postmultiplying by A'-G-1, we have HN = G-1 as was to be 
proven. Also, from (A21), gN must be orthogonal to the N - 1 independent vectors 
fo, 0, * I *N-2, and from (A14), gN is also orthogonal to oWN-1. Thus, gN = 0, and 

XN is the stationary point of f(x). 
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